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The security of the decoy-state BB84 protocol,
one of the most frequently demonstrated quantum
key distribution (QKD) protocols, has usually been
proved [1-4] under assumptions on the photon number
statistics of the light source, such as a Poissonian dis-
tribution. Since these assumptions consist of infinite
number of inequalities on the probability distribution
of the photon number, it is impossible to verify them
directly in a calibration experiment on the source. To
bridge this gap, we propose a rigorous security proof
of the decoy-state BB84 protocol by considering the
calibration of the probability distribution of the pho-
ton number from a light source.

We first propose a method to calibrate the prob-
ability distribution of the photon number of phase-
randomized state ρ =

∑∞
n=0 pn|n⟩⟨n| from a light

source. The method is based on observing various
rates of coincidence detections amongD threshold de-
tectors. It provides a lower bound pLn and an upper
bound pUn on the probability pn (n = 0, · · · , J). The
number of J depends on the number of the detectors
D. We have mathematically solved the optimization
problem which has the constraint from the observed
rates to derive the upper and lower bounds.

Next we explain the sketch of the security proof of
decoy-state BB84 QKD protocols by using the result
of the calibration method. We consider a decoy-state
BB84 protocol using three states with different inten-
sities, signal state ρS =

∑∞
n=0 an|n⟩⟨n|, decoy state

ρD =
∑∞

n=0 a
′
n|n⟩⟨n|, and vacuum state ρV = |0⟩⟨0|.

We assume that the calibration method provides the
bounds aLn , a

U
n , a

′L
n , a′Un (n = 0, · · · , J), and they sat-

isfy aLn/a
′U
n ≥ aU2 /a

′L
2 and aLn ≥ a′Un (n = 2, · · · , J).

We can then derive a lower bound on the yield of a 1-
photon state, Y L

1 = (aL2QD/p
′ − a′U2 QS/p− (a′U0 aU2 −

aL0 a
′L
2 )Y0 − aU2 (1 −

∑J
i=0 a

′L
i ))/(a′U1 aU2 − aL1 a

′L
2 ), and

an upper bound on the error probability for a 1-
photon state eU1 = (QSES/p − QDED/p

′ − (aL0 −
a′U0 )e0Y0 + (1 −

∑J
i=0 a

′L
i ))/((aL1 − a′U1 )Y L

1 ), where
p and p′ are the probabilities of the choice of sig-
nal state and decoy state, respectively; QS and QD

(QSES andQDED) the overall gains (the overall error
rates) for signal state and decoy state, respectively.
Then the asymptotic secure key rate can be calcu-
lated as R = (paL1 + p′a′L1 )Y L

1 (1 − H(eU1 )) − (QS +
QD)H((QES + QED)/(QS + QD)). The calculated
key rates are shown in FIG. 1, which shows that the
calibration with four detectors achieves a rate close
to that with Poissonian assumption (J = ∞).

FIG. 1. Secure key rates per pulse for various proto-
cols. The lowest curve (a) is for the BB84 protocol with-
out decoy. The other curves (b)–(f) are for the decoy-
state BB84 protocol with various levels of confidence on
the light source. (b) An ideal Poissonian source with
an = e−µSµn

S/n! and a′n = e−µDµn
D/n! with µS = 0.5

and µD = 0.05. (c)–(e) The same source but only the
values of an and a′n (n = 0, · · · , J) are known. (f) Based
on the calibration method with four detectors applied to
the same source. The parameters: p = 0.5, p′ = 0.4, and
Y0 = 10−8. We assume a constant bit error rate of 1%.
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