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Not taking classified work within secret services into consideration, Merkle is the first per-
son to have asked—and solved—the question of secure communications over insecure channels.
In his seminal (rejected!) 1974 project for a Computer Security course at the University of
California, Berkeley, he discovered that it is possible for two people who want to communicate
securely to establish a secret key by communicating over an authenticated channel that pro-
vides no protection against eavesdropping. Merkle’s solution to this conundrum offers quadratic
security in the sense that if the legitimate parties—codenamed Alice and Bob—are willing to
expend an effort in the order of N , for some security parameter N , they can establish a key
that no eavesdropper—codenamed Eve—can discover with better than vanishing probability
without expending an effort in the order of N2.

Quadratic security may seem unattractive compared to the potential exponential security
entailed by the subsequently discovered key establishment protocols of Diffie and Hellman and of
Rivest, Shamir and Adleman, among others. However, the security of those currently ubiquitous
cryptographic solutions will be compromised with the advent of full-scale quantum computers,
as discovered by Shor more than two decades ago. And even if a quantum computer is never
built, no one has been able to prove their security against classical attacks, nor that of quantum-
resistant candidates based, for instance, on short vectors in lattices. Furthermore, Merkle had
already understood in 1974 that quadratic security could be practical if the underlying one-way
function (see below) can be computed very quickly: if it takes one nanosecond to compute the
function and legitimate users are willing to spend one second each, a classical adversary who
could only invert the function by exhaustive search would require fifteen expected years to break
Merkle’s original scheme.

The main interest of Merkle’s solution is that it offers provable security, at least in the
query model of computational complexity, a model closely related to the random oracle model.
In this model, we assume the existence of a black-box function f : D → R from some domain D
to some range R, so that the only way to learn something about this function is to query the
value of f(x) on inputs x ∈ D that can be chosen arbitrarily. The query complexity of some
problem given f is defined as the expected number of calls to f required to solve the problem,
using the best possible algorithm. In our case of interest, we shall consider random black-
box functions, meaning that for each x ∈ D, the value of f(x) is chosen uniformly at random
within R, independently of the value of f(x′) for any other x′ ∈ D. Provided the size r of R
is sufficiently large compared to the size d of D, such a random function is automatically one-
to-one, except with vanishing probability. The main characteristic of these black-box random
functions that is relevant to the proof of security of Merkle’s scheme is that, given a randomly
chosen point y in the image of f , the only (classical) approach to finding an x so that f(x) = y
is exhaustive search: we have to try x’s one after another until a solution is found. Indeed,
whenever we try some x′ and find that f(x′) 6= y, the only thing we have learned is that this
particular x′ is not a solution. Provided the function is indeed one-to-one, we expect to have to
query the function d/2 times on average in order to find the unique solution.
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One may argue that black-box random functions do not exist in real life, but we can replace
them in practice with one-way functions—provided they exist!—which is what Merkle meant by
“one-way encryption” in his 1974 class assignment. Thus, we can base the security of Merkle’s
scheme on the generic assumption that one-way functions exist, which is unlikely to be broken
by a quantum computer, rather than the assumption that specific computational problems such
as factorization or finding short vectors in lattices are difficult, at least the first one of which is
known not to hold on a quantum computer.

It was apparently noticed for the first time by one of us in 2005, and published a few years
later, that Merkle’s original 1974 scheme, as well as his better known subsequently published
puzzles, are broken by Grover’s algorithm on a quantum computer. This attack assumes that the
eavesdropper can query the function in quantum superposition, which is perhaps not reasonable
if the function is provided as a physical classical black box, but is completely reasonable if it is
given by the publicly-available code of a one-way function (as originally envisioned by Merkle).
If the legitimate parties are also endowed with a quantum computer, the same paper gave an
obvious fix, by which the legitimate parties can establish a key after O(N) quantum queries to
the black-box function, but no quantum eavesdropper can discover it with better than vanishing
probability without querying the function O(N3/2) times.

At the Crypto 2011 conference, several of us introduced a new quantum protocol that no
quantum eavesdropper could break without querying the black-box functions Ω(N5/3) times.
We also offered the first protocol provably capable of protecting classical codemakers against
quantum codebreakers, although O(N13/12) queries in superposition sufficed for the quantum
eavesdropper to obtain the not-so-secret key. Unfortunately, our security proofs were worked
out in the traditional computational complexity worst-case scenario. In other words, it was only
proved that any quantum eavesdropper limited to o(N5/3) or o(N13/12) queries, depending on
whether the legitimate parties are quantum or classical, would be likely to fail on at least one
possible instance of the protocol. This did not preclude that most instances of the protocol could
result in insecure keys against an eavesdropper who would work no harder than the legitimate
parties. Said otherwise, our Crypto 2011 result was of limited cryptographic significance.

In subsequent work (arXiv/1108.2316v2), we claimed to have provided a proper average-case
analysis of our protocols, rendering them cryptographically meaningful, so that any quantum
eavesdropper has a vanishing probability of learning the key after only o(N5/3) or o(N7/6)
queries 1, where the probabilities are taken not only over the execution of the eavesdropping
algorithm but also over the instance of the protocol run by the legitimate parties. In the
same paper, we also extended our results to two sequences of protocols based on the k-SUM
problem, where k ≥ 2 is an integer parameter, in which the legitimate parties query the black-
box random functions O(kN) times. It was claimed that any quantum eavesdropper has a
vanishing probability of learning the key after o(N
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k+1 ) or o(N1+ k
k+1 ) queries, against the

classical or the quantum protocol parametrized by k, respectively. Again, this was claimed
to hold not only in the cryptographically-challenged worst-case scenario, but also when the
probabilities are taken over the protocols being run by the legitimate parties.

Unfortunately, all our average-case analyses were incorrect! The case k = 2 can be fixed
rather easily, hence the insufficiency of o(N5/3) queries for a quantum-against-quantum protocol
and of o(N7/6) queries for a classical-against-quantum protocol in a cryptographically significant
setting can be derived from the incorrect arguments provided in arXiv/1108.2316v2 (this will
indeed be fixed in a forthcoming v3!). However, we also claimed that the case k > 2 could be
proved in ways “similar to” when k = 2. This was a mistake due to a fundamental difference

1 For classical legitimate parties, our original o(N13/12) had been improved to o(N7/6).
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in the k-SUM problem whether k = 2 or k > 2. Whereas the 2-SUM problem is easily seen to
be random self-reducible, so that its hardness in worst case implies its hardness on average,
this does not seem to be the case for the k-SUM problem when k > 2. In particular, the worst-
case lower bound proved by Belovs and Špalek in 2013 on the difficulty of solving the k-SUM
problem on a quantum computer does not extend in any obvious way to a lower bound on
average. And without such an average lower bound, our previously claimed results went up in
smoke for k > 2. Furthermore, for a technical reason, even such an average lower bound would
not suffice as we also need an average-case composition theorem.

In this work, we overcome all these difficulties and give the first correct and cryptographically
significant 2 proof for our earlier claims. Consequently, we prove that for any ε > 0 there is
a classical protocol that allows the legitimate parties to establish a common key after O(N)
expected queries to black-box random functions, yet any quantum eavesdropper will have a van-
ishing probability of learning their key after O(N1.5−ε) queries to the same oracle. The vanishing
probability is over the randomness in the actual run of the protocol followed by that of the eaves-
dropper’s algorithm. If we allow the legitimate parties to use quantum computers as well, their
advantage over the quantum eavesdropper becomes arbitrarily close to the quadratic advantage
that classical legitimate parties enjoyed over classical eavesdroppers in the seminal 1974 work
of Merkle.

Our results require new tools in quantum query complexity, which are of independent
interest. In particular, we introduce techniques to lower-bound the quantum query complexity
of distinguishing between two probability distributions, which we use to extend the adversary
lower bound method in order to handle average-case complexity, but they could have other
uses in cryptography. This approach is necessary for the distributions of inputs considered
here because the associated decision problems become trivial on average, which prevents us
from applying the (very few) methods previously developed to determine average-case quan-
tum query complexity lower bounds. Furthermore, we prove the required composition theorem,
which applies to our lower bound method. Using these two tools, we prove that any quantum
eavesdropper who does not make a prohibitive number of calls to the black-box functions will
fail to break a typical instance of the protocol, except with vanishing probability.

This work fits in the general framework of “Cryptography in a quantum world”, which
addresses the question: “Is the fact that we live in a quantum world a blessing or a curse
for codemakers?”. It is a blessing if we allow quantum communication, thanks to Quantum
Key Establishment (aka Quantum Key Distribution—QKD), at least if the protocols can be
implemented faithfully enough to close the door on quantum hackers. On the other hand, it is
a curse if we continue to use the current cryptographic infrastructure, which intends to secure
the Internet, but at the risk of falling prey to upcoming quantum computers. However, it is
mostly a draw in the realm of provable query complexity in the black-box model considered in
this work since codemakers enjoy a quadratic (or arbitrarily close to being quadratic) advantage
over codebreakers in both an all-classical or an all-quantum world, at least in terms of query
complexity (but see footnote 2 again).

The full paper is available at http://arxiv.org/abs/1704.08182. It has been accepted for
oral presentation at the 12th Conference on Theory of Quantum Computation, Communication
and Cryptography (TQC), to take place in Paris in June 2017, and will appear in its Proceedings.

2 It is not entirely cryptographically meaningful to restrict the analysis to the number of calls to the black-box
functions, taking no account of the computing time that may be required outside those calls. However, if we
also restrict the legitimate expected time to be in O(N), then our quantum protocol with k = 3 remains valid
and provably resists any o(N7/4)-time quantum eavesdropping attack, which was previously claimed, but with a
fundamentally incorrect proof. This is reasonably close to quadratic security to be of potential practical use.

3

http://arxiv.org/abs/1704.08182

